Total domination and total domination subdivision number of a graph and its complement
نویسندگان
چکیده
A set S of vertices of a graph G= (V ,E) with no isolated vertex is a total dominating set if every vertex of V (G) is adjacent to some vertex in S. The total domination number t(G) is the minimum cardinality of a total dominating set ofG. The total domination subdivision number sd t (G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n 4, minimum degree and maximum degree . We prove that if each component of G and G has order at least 3 and G,G = C5, then t(G) + t(G) 2n 3 + 2 and if each component of G and G has order at least 2 and at least one component of G and G has order at least 3, then sd t (G)+ sd t (G) 2n 3 + 2. We also give a result on t(G)+ t(G) stronger than a conjecture by Harary and Haynes. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Total Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملSome properties and domination number of the complement of a new graph associated to a commutative ring
In this paper some properties of the complement of a new graph associated with a commutative ring are investigated ....
متن کاملTotal domination subdivision numbers of graphs
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the tot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008